
Alias Calculus for a Simple Imperative Language

with Decidable Pointer Arithmetic

Aizhan Satekbayeva

L.N. Gumilyov Eurasian National University

Astana, Kazakhstan

satekbayeva@gmail.com

Nikolay V. Shilov

Nazarbayev University

Astana, Kazakhstan

nikolay.shilov@nu.edu.kz

Aleksandr P. Vorontsov

Novosibirsk State University

Novosibirsk, Russia

corvin7@gmail.com

Abstract—Alias calculus was proposed by Bertrand Meyer in

2011 for a toy programming language with single data type for

abstract pointers. The original calculus is set-based formalism

insensitive to control flow; it is a set of syntax-driven rules to

compute an upper approximation aft(S,P) for aliasing after

execution of a program P for a given initial aliasing S; this

calculus guarantees partial correctness of the assertion

{S}P{aft(S,P)}. The primary purpose of our paper is to present a

variant of alias calculus for more realistic programming language

with static and dynamic memory, with types for regular data as

well as for decidable pointer arithmetic. Our variant is insensitive

to control flow (as the original calculus by B. Meyer), but is

calculus is equation-based (in contrast to the original calculus).

Keywords— aliasing problem; alias calculus; logic of partial

correctness

I. INTRODUCTION

A. Aliasing Problem

In this position paper we present a variant of alias

calculus, i.e. a syntax-driven procedure to compute aliasing

aft(S, P) after execution of a program P for a given initial

aliasing S in such a way that a triple {S}P{aft(S,P)} to be valid

(in Hoare logic of partial correctness).
In general aliasing problem is to predict, detect and/or

trace pointers to the same addresses in dynamic memory.
Importance of the problem is due to mistakes and errors that
may happen in program run-time due to improper alias
handling. Two simple examples of errors of this type follows
below:

 x = malloc(sizeof(int));

x = malloc(sizeof(int));

//memory leak;

 y = x; free x;

free y;

// invalid memory access.

The first example shows a loss of a link to a piece of memory

allocated first (which can result in run out of memory, if

iterated); the second example shows an attempt to free a

deleted piece of memory (which can result in an abnormal

program termination immediately).
Although errors given in the examples seem obvious and

easy to fix, similar problems often happen in real programs
with thousands of lines, with complicated modular structure.
Therefore, the development of methods to detect and eliminate
of similar errors is an important problem from industrial point
of view as well as from educational and research perspective
(e.g. for verifying compiler research [3]).

The purpose of aliasing analysis is to determine statically
address expressions in a program which can/may point to the
same memory location in run-time. This analysis is intended
to find and eliminate the errors in the program that are due to
single (as memory leak) or multiple links to pieces of memory
(as invalid memory access). In general settings the problem is
undecidable for a programming language with expressive
pointer (address) arithmetic; however a large collection of
approximate algorithms have been published that provide a
trade-off between the efficiency, accuracy and soundness of
the aliasing analysis [6].

There are several attributes to characterize alias analyses [2],

some of them are listed and explained below:

 flow-sensitivity,

 context-sensitivity,

 heap modeling,

 alias representation.

While a flow-sensitive analysis usually computes aliases for
every control point in a program, flow-insensitive analyses
computes aliasing for the program as a whole. Context-
sensitivity is about function/procedure calls and means
whether a context of a call is taken into consideration or not.
Analysis may be founded on different models of the heap (i.e.

This research is supported by Nazarbayev University Seed Grant KF-
14/16 “Research of Formal Models for analysis of programs with Dynamic

Memory”.

This research is supported by Nazarbayev University Seed Grant KF-
14/16 “Research of Formal Models for analysis of programs with Dynamic

Memory”.

mailto:satekbayeva@gmail.com
mailto:nikolay.shilov@nu.edu.kz
mailto:corvin7@gmail.com

dynamic memory): heap may be a data structure consisting of
cells with abstract addresses capable to save arbitrary data, or
with integer addresses to store primitive data only, etc.
Aliasing may be presented by equalities, by sets of synonyms,
or somehow else.

In spite of decades of research, development and use there
are still challenges in alias analysis [2, 6]:

 scalability vs. precision;

 flow- and context sensitivity;

 object-oriented languages;

 libraries and low-level functions,

 multithreaded programs.

New research on alias analysis emerge (e.g. [1]) due to
these and other reasons. In particular, alias calculus proposed
by Bertrand Meyer [4] is new approach to aliasing research.
Three variants of calculus for toy imperative language with
single data type for abstract pointers are presented in [4]; these
variants are set-based formalisms insensitive to control flow
and context, and without address arithmetic.

B. Paper and its Structure

The primary purpose of our position paper is to present an
alias calculus for more realistic programming language with
static and dynamic memory, a language with data values and
decidable address arithmetic. The presented variant is
insensitive to control flow (as the original calculus by B.
Meyer), but is equation-based (in contrast to the original
calculus).

The rest of the paper is organized as follows. The next
subsection sketches alias calculus for a toy programming
language E0 that was developed by B. Meyer in [4]. Then in
section II we introduced programming language MoRe, its
formal syntax and structural operational semantics; this
language is more realistic than E0 and may be considered as a
dialect of programming language used in [5] for separation
logic. Stack-based alias calculus for this language is presented
in section III. A preliminary discussion of perspectives of the
calculus for detecting memory leaks and invalid memory
access is presented in the last section IV; some topics for
further research are also discussed in the concluding section.

C. Alias Calculus for Programming Language E0

Let V be an arbitrary finite fixed set which elements are

called (pointer or address) variables. An alias relation on V is

any symmetric and irreflexive binary relation on V. Any alias

relation S on V can be interpreted as information about which

of these variables may point to the same storage (memory)

location. For any binary relation S on V let sic(S) be

symmetric irreflexive closer
1
 of S i.e.

 sic(S)={(x,y), (y,x) : (x,y)S}.

For any alias relation S and any variable x let
2

1
 Acronym sic stays for Symmetric Irreflexive Closure.

2
 Hereafter we use symbol  to denote syntactic identity.

 (S-x)={(y,z)S : neither yx nor zx},

 (S/x)={y : yx or (x,y)S}.

For any alias relation S let cnd(S) be the following first-order

quantifier-free formula
3

 x,yV,(x,y)S(x y);

it is easy to see that cnd-constructor possesses is monotone:

for any alias relations S1 and S2, if S1S2 then

cnd(S1)cnd(S2).

In [4] the alias calculi were defined for two programming
languages E0 and E1: E1 is a superset of E0 with procedures.
Both languages have single data type for addresses only.
Syntax of the language E0 is defined as follows:

P::= skip | forget(V) | create(V) | V:=V |

(P;P) | P
N
 | then P else P | loop P

where

• V is metavariable for the set of address variables (that

was fixed above),

• N is metavariable for natural numbers in any fixed

notation (e.g. N::= 0 | 1 | 2 | …)

As we already stated in the above, an alias calculus is a set
of syntax rules which work with formulas of the type aft(S,P),
where P is a program, S is an alias relation on the set V of
address variables, and aft denotes the transformer of alias
relations

4
. In terms of Hoare’s logic it is possible to say that

the calculus guarantees the correctness for the following triple
{cnd(S)}P{cnd(aft(S,P))}.

Alias calculus for E0 and its informal operational
semantics follow below.

• aft(S, skip) = S because skip is the empty operator.
• aft(S, forget(x)) = aft(S, create(x)) = S-x, i.e. memory

deallocation and allocation operators have the same
effect on an alias relation because after these
operations the variable x isn’t alias to any other
variable.

• aft(S, x:=y) = sic((S-x) ({x}((S-x)/y))), i.e. in a
result of the assignment x:=y the address variable x
forgets all its former aliases and becomes an alias to
all aliases of the variable y.

• aft(S, (;)) = aft(aft(S,), ), i.e. the sequential
composition of programs means sequential application
of programs.

• Aft(S, 0
) = S and aft(S, n+1

) = aft(aft(S, n
), ) for

any n0, i.e. n-fold iteration (repetition) n
 is the n-

fold sequential composition.

• Aft(S, then  else ) = aft(S, )  aft(S, ), i.e. then-
else is nondeterministic choice of any branch in two.

• aft(S, loop ) = n0 aft(S, n
), i.e. loop is

nondeterministic iteration.

3
 Acronym cnd stays for CoNDition.

4
 Acronym aft stays for AFTer.

II. MORE PROGRAMMING LANGUAGE

In this section we present a programming language MoRe
that is a dialect of the programming language used for
definition of Separation Logic in [5]; the acronym MoRe stays
for More Realistic.

The language has two data types that are called addresses
and integers with implicit type casting from integers to
addresses.

Address data type in MoRe is any (finite or infinite) set of
values ADR with constants that are conventionally denoted 0
and 1, operations that are conventionally called addition and
subtraction (denoted + and –) such that (ADR, 0, 1, +, –) is a
commutative additive semi-group with decidable first-order
theory TADR. Examples include Zm the ring of residuals
modulo any particular fixed positive m, Presburger arithmetic,
etc. Let us remark that TADR is a complete theory of a
particular algebraic system (ADR, 0, 1, +, –); it implies that

for any sentence  the following holds: (ADR, 0, 1, +, –)╞

iff TADR├.

Integer data type in MoRe is any (finite or infinite) set of
(mathematical) integers INT with “standard” constants 0 and
1, “standard” operations addition, subtraction, multiplication
and division within the range of INT (denoted +, –, * and /)
and with implicit computable surjective type-casting function

in2ad:INTADR; we assume that in2ad is a homomorphism
of (INT, 0, 1, +, –) onto (ADR, 0, 1, +, –) and (due to this
assumption) we can consider multiplication- and division-free
integer expressions as address expressions (subject to the type-
casting).

Let V be an alphabet variables (for legal integers and/or
addresses), C be a language for representation of integer
constant (i.e. integer values as well as addresses via implicit
type casting), T be a language of arithmetic expressions
(terms) with constants from C and variables from V, and F is
language of the admissible logical formulas constructed of

equalities (=) and inequalities () between expressions from T
using of Boolean operations. Syntax of MoRe programming
language is defined as follows:

P::= skip | var V=C | V:=T |

V:=cons(C
*
) | [V]:=V | V:=[V] | dispose(V) |

(P;P) | (if F then P else P) | (while F do P).

Structural operational semantics of this model language
uses memory model consisting of two disjoint parts: a static
memory (conventionally) called stack and dynamic memory
(conventionally) called heap. State is an arbitrary pair of
mappings s=(s.st, s.hp) (or, for short, s=(st, hp), or (st, hp)
when s is implicit), where:

 st is a state of the stack, i.e. a partial mapping (with
finite domain) from variables V to integers INT

(understood as their values), i.е. st:V INT,

 hp is a state of the heap, i.e. a partial mapping with
finite domain from addresses ADR to integers INT

(understood as referenced values), i.e. hp:ADR INT.

The semantics of expressions (terms) T and logical
formulas F is defined as follows. Since expressions T are
constructed from constants C and variables V, every

expression T in every stack state st:VINT has a definite or

indefinite value st()INT{}. Since logical formulas F are
constructed (using Boolean connectives) of equalities and

inequalities of arithmetic expressions, every formula F in

any stack state st:VINT can be either true (valid) st╞, false

(invalid) st~, or indeterminate st? according to the
following rules:

 if both expressions of an equality/inequality have
definite values in st, the true or false value of this
equality/inequality is according to values of the
expressions;

 if one or both expressions of an equality/inequality
have an indefinite value in st, the value of this
equality/inequality in st is indeterminate;

 if all sub-formulas of a Boolean formula are true
or/and false in st, then the true or false of the formula
is defined in the standard Boolean manner;

 if a sub-formula of a Boolean formula is indeterminate
in st, then the formula is also indeterminate.

Structural operational semantics (SOS) of programming
language MoRe is axiomatic system for triples of the form

s<>s, where s is a state, s is a state or an exception abort

(an exceptional state or situation), and  is a program;

intuition behind this triple follows: program  converts input

state s into output state s (that may be exception). SOS
inference rules are syntax-driven and have the following form:

s1<1>s1 , … sn<n>sn

 s<>s (application condition)

where n is the number of premises of the rule, and condition is
an applicability condition; inference rules without premises
(i.e. when =0) are axioms. Commented list of axioms and
inference rules follows below.

Variable declaration axioms. If a variable x hasn’t been
declared yet, it can be declared and initialized by a value i, but
an attempt to re-declare the variable results in exception:

(st,hp)<var x=i>(st{(x,i)}, hp) if xDom(st));

(st,hp)<var x=i>abort otherwise.

Empty operator axiom:

 s<skip>s .

Direct assignment axioms. If a variable x has been
declared and an expression t has a definite value, the
assignment updates the value of the variable x; otherwise the
assignment results in exception:

 if xDom(st))

(st,hp)<x:=t>(upd(st, x, t), hp) and st(t)INT;

(st,hp)<x:=t>abort otherwise.

Memory allocation axioms. The command cons allocates

(if possible) a fresh segment of (k+1) heap elements, and

initializes cells in this segment by provided initial values;

otherwise the allocation results in exception:

 if xDom(st),

(st,hp)<x:=cons(i0,…ik)>(upd(st, x, l),hp) lINT,

in2ad(l)Dom(hp), … in2ad(l+k)Dom(hp)

are disjoint addresses,

hp = hp{(in2ad(l), i0), … (in2ad(l+k), ik)};

(st,hp)<x:= cons(i0,…ik)>abort otherwise.

Indirect assignment axioms. If a variables x and y have

been declared, the cell pointed by x has been allocated, the

indirect assignment updates the value in this cell; otherwise

the attempt of the indirect assignment results in exception:

 if x,yDom(st),

(st,hp)<[x]:=y>(st, hp) in2ad(st(x))Dom(hp),

 h = upd(hp, in2ad(st(x)),st(t));

(st,hp)<x:=y>abort otherwise.

Dereferencing axioms. If variables x and y have been
declared, the cell pointed by y has been allocated, then the
dereferencing updates the value of the variable x; otherwise
the attempt results in exception:

 if x,yDom(st),

(st,hp)<x:=[y]>(st,hp) in2ad(y)Dom(hp),

 st =upd(st, x, hp(in2ad(y)));

(st,hp)<x:=[y]>abort otherwise.

Memory deallocation axioms. If a variable x has been
declared and the cell pointed by x has been allocated, then the
cell is deallocated; otherwise the attempt results in exception:

 if xDom(st),

(st,hp)<dispose(x)>(st, hp) in2ad(st(x))Dom(hp),

hp = hp\{(in2ad(st(x)), hp(in2ad(st(x))))};

(st,hp)<dispose(x)>abort otherwise.

Composition rules:

s<>abort

s<;>abort ;

s<>s , s<>s

 s<;>s if s isn’t abort.

Choice rules and axiom. If the condition is true in a state,
the choice selects then-branch; if the condition is false, else-
branch is selected; if the condition is indeterminate, the choice
results in exception:

 s<>s

 s<if  then  else >s if s╞  ;

 s<>s

 s<if  then  else >s if s~ ;

 s<if  then  else >abort if s? .

Loop rule and axioms. If the condition is true in a state,
then one iteration have to be executed and then the loop have
to be attempted again; if the condition is false, the loop halts;
if the condition is indeterminate, the loop results in exception:

 s<>s , s <while  do >s

 s<while  do >s if s╞  ;

 s< while  do >s if s~ ;

 s< while  do >abort if s? .

III. STACK-BASED ALIAS CALCULUS FOR MORE

Let us fix a program. The set of address variables AV and
the set of address expressions AE (of the program) are defined
by mutual induction as follows.

1) Address variables is any variable x that occurs (within

the program) in

a) the left-hand side of any allocation x:=cons…;

b) the left-hand side of any indirect assignment

[x]:=…;

c) the right-hand side of any dereferencing …:= [x];

d) any memory deallocation operator dispose(x);

e) any address expression.

2) Address expressions (within the program) are

a) all address variables;

b) all subexpression of any address expression;

c) all expressions t, constructed from C and V using

addition and subtraction, which occur in the right-hand side of

any assignment to any address variable x:=t;

d) all expressions x+1, … x+k such that the program

has memory allocation x:=cons i0…ik.

For any set of address expressions AS and any set of
address variables D let AS(D) be the set of all address
expressions in AS that don’t use variables other than in D. In
particular, any set of address variables D the set AE(D) is the
set of all address expressions in the program that don’t use
variables other than in D.

For any expression e, any expression t and any variable x

let etx be result of substitution t instead of x in e.

A pair of aliases (or synonyms) is an equality of any two
address expressions. A pair of anti-aliases (or antonyms) is an

inequality () of any two address expressions.

Recall that all address expressions in AE are linear
expressions with integer coefficients. It implies that pairs of

synonyms or antonyms over AE look like Diophantine
equations and inequalities over integers. But we think all these
pairs as equations and inequalities over (ADR, 0, 1, +, –)
assuming implicit type casting (applied to all used integer
constants).

A configuration is a triple Cnf=(I, N, S) consisting of two

sets N I AV of address variables and a finite set S of pairs
of synonyms and antonyms (with variables in I) that has a
solution as a system of equalities and inequalities in (ADR, 0,
1, +, –), i.e. that is consistent with theory TADR; informally
speaking the set I is for Initialized address variables, the set N
is for Non-allocated initialized address variables, and the set S
is a System of equations and inequalities to specify what
expressions may be aliases and what can’t be.

For any configuration Cnf =(I, N, S) let
5

 &Cnf be conjunction of all pairs of synonyms and
antonyms in S (assuming implicit type casting);

 cls(Cnf) =

= {e=e : e,eAE(I), TADR├ &Cnf (e=e)} 

 {ee : e,eAE(I), TADR├ &Cnf (ee)};

 ncl(Cnf) = cls(Cnf) 

 {ee : e,eAE(I), (e=e)cls(Cnf)}.

Let st be a state of a stack; we write st ╞Cnf and say that
st satisfies configuration Cnf, when all variables in I are

declared in st (i.e. IDom(st)) and all formulas from ncl(Cnf)
are true (valid) in st (i.e. st ╞&ncl(Cnf)).

Any two configurations Cnf=(I,N,S) and

Cnf=(I,N,S) are said to be equivalent if I=I, N=N and

ncl(Cnf)= ncl(Cnf). Distribution (or alias distribution) is an
arbitrary finite set of configurations in which neither two are
equivalent. If D is an arbitrary set of configurations, then its
refinement is a distribution rfn(D) obtained from D by leaving
a single configuration in each equivalence class in D.

Let D be an arbitrary alias distribution, st be an arbitrary
state of a stack; we write st ╞D and say that st satisfies
distribution D, when st ╞Cnf for a configuration Cnf in D.

Let us define the distribution converter aft for MoRe
programs by structural induction – for individual operators
and for compound programs.

1) For operators that do not change the address

variables, we have:

a. aft(D, skip)=D;

b. aft(D, var x=i)=D¸ if x isn’t address variable;

c. aft(D, x=t)=D¸ if x isn’t address variable;

d. aft(D, x=[y])=D ̧if x isn’t address variable;

e. aft(D, [x]=y)=D¸ if y isn’t address variable.

5
 Acronym cls stays for closure, acronym ncl – for negative

closure.

2) If x is some address variable, distribution aft(D, var

x=i) is obtained as follows. Let Cnf=(I,N,S) be an arbitrary

configuration in D. Make re-initialization warning if xI. Let

Cnfvar x=i be (Ivar x=i, Nvar x=i, Svar x=i) where

a. Ivar x=i=I{x},

b. Nvar x=i=N{x}, and

c. Svar x=i= ncl({e=e : e,eAE(Ivar x=i),

TADR├ &Cnf (eix=eix)} 

 {ee : e,eAE(Ivae x=i),

TADR├ &Cnf (eix eix)}).

Then let aft(D, var x=i) be rfn{Cnfvar x=i : CnfD}.

3) If x is some address variable, distribution aft(D, x:=t)

is obtained as follows. Let Cnf=(I,N,S) be an arbitrary

configuration in D. Make un-initialization warning if xI or t

has uninitialized variable (i.e. not in I). Make memory-leak

warning if xN and TADR├ &Cnf(etx≠x) for every address

expression eAE(I). Let Cnfx:=t be (Ix:=t, Nx:=t, Sx:=t) where

a. Ix:=t=I,

b. Nx:=t=N, and

c. Sx:=t= ncl({e=e : e,eAE(I),

TADR├ &Cnf (etx=etx)} 

 {ee : e,eAE(I),

TADR├ &Cnf (etx etx)}).

Then let aft(D, x:=t) be rfn{Cnfx:=t : CnfD}.

4) Distribution aft(D, x:=cons(i0,…ik) is obtained as

follows. Let Cnf=(I,N,S) be an arbitrary configuration in D.

Make un-initialization warning if xI. Let y be a new (fresh)

variable and let NewCnf(y,k) be the set of all pairs of antonyms

that have the form e≠y+i and y+i≠y+j where eAE(I) and

0i<jk. Make memory-leak warning if xN and TADR├

(&Cnf & &NewCnf(y,k))(eyx≠x) for every address

expression eAE(I). Let Cnfx:=cons(i0,..ik) be (Ix:=cons(i0,..ik),

Nx:=cons(i0,..ik), Sx:=cons(i0,..ik)) where

a. Ix:=cons(i0,..ik)=I,

b. Nx:=cons(i0,..ik)=N\{x}, and

c. Sx:=cons(i0,..ik)= ncl({e=e : e,eAE(I),

TADR├ (&Cnf & &NewCnf(y,k)) (eyx=eyx)} 

 {ee : e,eAE(I),

TADR├ (&Cnf & &NewCnf(y,k)) (eyx eyx)}).

Then let aft(D, x:=cons(i0,…ik)) be rfn{Cnfx:=cons(i0,..ik) :

CnfD}.

5) If x is some address variable, distribution aft(D,

x:=[y]) is obtained as follows. Let Cnf=(I,N,S) be an arbitrary

configuration in D. Make un-initialization warning if xI or

yI. Make invalid-access warning if TADR├ &Cnf(y=z) for

some variable zN. Let Cnfx:=[y] be the set of configurations

(Ix:=[y], Nx:=[y], S) where

a. Ix:=[y]=I,

b. Nx:=[y]=N, and

c. S is consistent with

ncl({e=e : e,eAE(I\{x}),

TADR├ &Cnf (e=e)} 

 {ee : e,eAE(I\{x}),

TADR├ &Cnf (ee)}).

Then let aft(D, x:=[y]) be rfn(CnfD Cnfx:=[y]).

6) If x is some address variable, distribution aft(D,

dispose(x)) is obtained as follows. Let Cnf=(I,N,S) be an

arbitrary configuration in D. Make un-initialization warning if

xI. Make invalid-access warning if TADR├ &Cnf(x=y) for

some variable yN. Let Cnfdispose(x) be (Idispose(x), Ndispose(x),

Sdispose(x)) where

a. Idispose(x)=I,

b. Ndispose(x)=N{x}, and

c. Sdispose(x)=S.

Then let aft(D, dispose(x)) be rfn{Cnfdispose(x) : CnfD}.

7) Compound Programs:

a. aft(D, ( ; )) = aft(aft(D,), ),

b. aft(D, if  then  else ) = rfn(aft(D,) aft(D,)),

c. aft(D, while  do ) = rfn(n≥0 aft(D,n
)) where 0

=

skip, and k+1
=(k

;).

IV. RESULTS AND CONCLUSION

Stack-based alias calculus for programming language

MoRe is safe in the following sense.

Theorem: Let D be any alias distribution,  be any MoRe-
program and s=(st, hp) be any state such that st╞D; if

s=(st,hp) is a state such that s<>s then st╞aft(D,).

This theorem can be proven by routine induction on
program structure. Its formal proof will be published in the
full (journal) version of the paper soon.

More interesting questions are relations between run-time

exceptions and warnings that may be casted in exercise aft-

transformation. In particular, if a program  started in a state

s aborts due to re-initialization of some address variable then

re-initialization warning will be casted in aft(D,); if  uses

un-initialized address variable then un-initialization warning

will be casted in aft(D,).

But how run-time memory leaks do relate to memory-leak

warnings casted in exercise of aft(D,)? How run-time invalid

memory accesses do relate to invalid-access warnings casted

in aft(D,)? If to answer these questions then these warnings

can be used for errors prediction.

In particular, the examples of errors mentioned in the

Introduction can be represented in MoRe as follows:

 x:= cons(1) ; x:= cons(2),

 y:= x ; dispose(x); dispose(y).

if to compute aft({({x, y}, , )}, (x:= cons(1) ; x:= cons(2))

then memory-leak warning will be casted; if to compute

aft({({x, y}, , )}, (y:= x ; dispose(x); dispose(y)) then

invalid-access warning will be casted.

Recall that the primary purpose of our position paper is to

design and present an alias calculus for more realistic

programming language than the original one in [4]. Our

calculus is control flow insensitive and use only stack

variables for analysis. So the most evident topics for further

research are design and development of a sensitive to control

flow calculus that takes into account some information about

the heap. Only after that it will make sense to put into research

agenda prototyping on base of the calculus of some alias

analysis tool and try it for some benchmarks.

References
[1] R. Haberland and S. Ivanovskiy, Dynamically Allocated Memory

Verification in Object-Oriented Programs using Prolog. Accepted for
publication in Proc. of Spring/Summer Young Researchers' Colloquium

on Software Engineering (SYRCoSE-2014, May 29-31, 2014, Saint
Pitersburg). Institute for System Programming of the Russian Academy
of Sciences (ISPRAS). DOI: 10.15514/SYRCOSE-2014-8-7. Availabale
at http://syrcose.ispras.ru/2014/files/submissions/07_syrcose2014.pdf.

[2] M. Hind, Pointer Analysis: Haven’t We Solved This Problem Yet?
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering (PASTE '01),
pp.54-61.

[3] C. A. R.. Hoare, The Verifying Compiler: A Grand Challenge for
Computing Research. Perspectives of Systems Informatics (PSI'2003),
SpringerVerlag, Berlin, LNCS., no. 2890, pp. 1-12, 2003.

[4] B. Meyer, Steps Towards a Theory and Calculus of Aliasing.
International Journal of Software and Informatics, special issue
(Festschrift in honor of Manfred Broy), 2011., pp.77-115.

[5] J.C. Reynolds, Separation Logic: A Logic for Shared Mutable Data
Structures. Proceedings of 17th IEEE Symposium on Logic in Computer
Science (LICS 2002). IEEE Computer Press., 2002, pp.55-74.

[6] M. Sridharan, S. Chandra, J. Dolby, S.J. Fink, and E. Yahav, Alias
analysis for object-oriented programs. In D. Clarke, T. Wrigstad, and J.
Noble, editors, Aliasing in Object-Oriented Programming: types,
analysis, and verification. Springer, 2013, Lecture Notes in Computer
Science, Vol. 7850, p. 196-232.

http://syrcose.ispras.ru/2014/files/submissions/07_syrcose2014.pdf

