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Abstract—Alias calculus was proposed by Bertrand Meyer in 

2011 for a toy programming language with single data type for 

abstract pointers. The original calculus is set-based formalism 

insensitive to control flow; it is a set of syntax-driven rules to 

compute an upper approximation aft(S,P) for aliasing after 

execution of a program P for a given initial aliasing S; this 

calculus guarantees partial correctness of the assertion 

{S}P{aft(S,P)}. The primary purpose of our paper is to present a 

variant of alias calculus for more realistic programming language 

with static and dynamic memory, with types for regular data as 

well as for decidable pointer arithmetic. Our variant is insensitive 

to control flow (as the original calculus by B. Meyer), but is 

calculus is equation-based (in contrast to the original calculus).  

Keywords— aliasing problem; alias calculus; logic of partial 

correctness 

I.  INTRODUCTION 

A. Aliasing Problem 

In this position paper we present a variant of alias 

calculus, i.e. a syntax-driven procedure to compute aliasing 

aft(S, P) after execution of a program P for a given initial 

aliasing S in such a way that a triple {S}P{aft(S,P)} to be valid 

(in Hoare logic of partial correctness).  
In general aliasing problem is to predict, detect and/or 

trace pointers to the same addresses in dynamic memory. 
Importance of the problem is due to mistakes and errors that 
may happen in program run-time due to improper alias 
handling. Two simple examples of errors of this type follows 
below: 

 x = malloc(sizeof(int));  

x = malloc(sizeof(int));  

//memory leak; 

 y = x; free x;  

free y; 

// invalid memory access. 

The first example shows a loss of a link to a piece of memory 

allocated first (which can result in run out of memory, if 

iterated); the second example shows an attempt to free a 

deleted piece of memory (which can result in an abnormal 

program termination immediately). 
Although errors given in the examples seem obvious and 

easy to fix, similar problems often happen in real programs 
with thousands of lines, with complicated modular structure. 
Therefore, the development of methods to detect and eliminate 
of similar errors is an important problem from industrial point 
of view as well as from educational and research perspective 
(e.g. for verifying compiler research [3]). 

The purpose of aliasing analysis is to determine statically 
address expressions in a program which can/may point to the 
same memory location in run-time. This analysis is intended 
to find and eliminate the errors in the program that are due to 
single (as memory leak) or multiple links to pieces of memory 
(as invalid memory access). In general settings the problem is 
undecidable for a programming language with expressive 
pointer (address) arithmetic; however a large collection of 
approximate algorithms have been published that provide a 
trade-off between the efficiency, accuracy and soundness of 
the aliasing analysis [6]. 

There are several attributes to characterize alias analyses [2], 

some of them are listed and explained below: 

 flow-sensitivity, 

 context-sensitivity, 

 heap modeling, 

 alias representation. 

While a flow-sensitive analysis usually computes aliases for 
every control point in a program, flow-insensitive analyses 
computes aliasing for the program as a whole. Context-
sensitivity is about function/procedure calls and means 
whether a context of a call is taken into consideration or not. 
Analysis may be founded on different models of the heap (i.e. 
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dynamic memory): heap may be a data structure consisting of 
cells with abstract addresses capable to save arbitrary data, or 
with integer addresses to store primitive data only, etc. 
Aliasing may be presented by equalities, by sets of synonyms, 
or somehow else. 

In spite of decades of research, development and use there 
are still challenges in alias analysis [2, 6]: 

 scalability vs. precision; 

 flow- and context sensitivity;  

 object-oriented languages;  

 libraries and low-level functions, 

 multithreaded programs. 

New research on alias analysis emerge (e.g. [1]) due to 
these and other reasons.  In particular, alias calculus proposed 
by Bertrand Meyer [4] is new approach to aliasing research. 
Three variants of calculus for toy imperative language with 
single data type for abstract pointers are presented in [4]; these 
variants are set-based formalisms insensitive to control flow 
and context, and without address arithmetic. 

B. Paper and its Structure 

The primary purpose of our position paper is to present an 
alias calculus for more realistic programming language with 
static and dynamic memory, a language with data values and 
decidable address arithmetic. The presented variant is 
insensitive to control flow (as the original calculus by B. 
Meyer), but is equation-based (in contrast to the original 
calculus). 

The rest of the paper is organized as follows. The next 
subsection sketches alias calculus for a toy programming 
language E0 that was developed by B. Meyer in [4]. Then in 
section II we introduced programming language MoRe, its 
formal syntax and structural operational semantics; this 
language is more realistic than E0 and may be considered as a 
dialect of programming language used in [5] for separation 
logic. Stack-based alias calculus for this language is presented 
in section III. A preliminary discussion of perspectives of the 
calculus for detecting memory leaks and invalid memory 
access is presented in the last section IV; some topics for 
further research are also discussed in the concluding section.  

C. Alias Calculus for Programming Language E0 

Let V be an arbitrary finite fixed set which elements are 

called (pointer or address) variables. An alias relation on V is 

any symmetric and irreflexive binary relation on V. Any alias 

relation S on V can be interpreted as information about which 

of these variables may point to the same storage (memory) 

location. For any binary relation S on V let sic(S) be 

symmetric irreflexive closer
1
 of S i.e. 

 sic(S)={(x,y), (y,x) : (x,y)S}. 

For any alias relation S and any variable x let
2
  

                                                           
1
 Acronym sic stays for Symmetric Irreflexive Closure. 

2
 Hereafter we use symbol   to denote syntactic identity.  

 (S-x)={(y,z)S : neither yx nor zx}, 

 (S/x)={y : yx or (x,y)S}. 

For any alias relation S let cnd(S) be the following first-order 

quantifier-free formula
3
  

 x,yV,(x,y)S(x y);  

it is easy to see that cnd-constructor possesses is monotone: 

for any alias relations S1 and S2, if S1S2 then 

cnd(S1)cnd(S2). 

In [4] the alias calculi were defined for two programming 
languages E0 and E1: E1 is a superset of E0 with procedures. 
Both languages have single data type for addresses only. 
Syntax of the language E0 is defined as follows: 

P::= skip | forget(V) | create(V) | V:=V |  

(P;P) | P
N
 | then P else P | loop P 

where 

• V is metavariable for the set of address variables (that 

was fixed above), 

• N is metavariable for natural numbers in any fixed 

notation (e.g. N::= 0 | 1 | 2 | …) 

As we already stated in the above, an alias calculus is a set 
of syntax rules which work with formulas of the type aft(S,P), 
where P is a program, S is an alias relation on the set V of 
address variables, and aft denotes the transformer of alias 
relations

4
. In terms of Hoare’s logic it is possible to say that 

the calculus guarantees the correctness for the following triple 
{cnd(S)}P{cnd(aft(S,P))}. 

Alias calculus for E0 and its informal operational 
semantics follow below. 

• aft(S, skip) = S because skip is the empty operator. 
• aft(S, forget(x)) = aft(S, create(x)) = S-x, i.e. memory 

deallocation and allocation operators have the same 
effect on an alias relation because after these 
operations the variable x isn’t alias to any other 
variable. 

• aft(S, x:=y) = sic((S-x) ({x}((S-x)/y))), i.e. in a 
result of the assignment x:=y the address variable x 
forgets all its former aliases and becomes an alias to 
all aliases of the variable y.  

• aft(S, (;)) = aft(aft(S,), ), i.e. the sequential 
composition of programs means sequential application 
of programs. 

• Aft(S, 0
) = S and aft(S, n+1

) = aft(aft(S, n
), ) for 

any n0, i.e. n-fold iteration (repetition) n
 is the n-

fold sequential composition. 

• Aft(S, then  else ) = aft(S, )  aft(S, ), i.e. then-
else is nondeterministic choice of any branch in two. 

• aft(S, loop ) = n0 aft(S, n
), i.e. loop is 

nondeterministic iteration. 

                                                           
3
 Acronym cnd stays for CoNDition. 

4
 Acronym aft stays for AFTer. 



II. MORE PROGRAMMING LANGUAGE 

In this section we present a programming language MoRe 
that is a dialect of the programming language used for 
definition of Separation Logic in [5]; the acronym MoRe stays 
for More Realistic.  

The language has two data types that are called addresses 
and integers with implicit type casting from integers to 
addresses. 

Address data type in MoRe is any (finite or infinite) set of 
values ADR with constants that are conventionally denoted 0 
and 1, operations that are conventionally called addition and 
subtraction (denoted + and –) such that (ADR, 0, 1, +, –) is a 
commutative additive semi-group with decidable first-order 
theory TADR. Examples include Zm the ring of residuals 
modulo any particular fixed positive m, Presburger arithmetic, 
etc. Let us remark that TADR is a complete theory of a 
particular algebraic system (ADR, 0, 1, +, –); it implies that 

for any sentence  the following holds: (ADR, 0, 1, +, –)╞ 

iff TADR├. 

Integer data type in MoRe is any (finite or infinite) set of 
(mathematical) integers INT with “standard” constants 0 and 
1, “standard” operations addition, subtraction, multiplication 
and division within the range of INT (denoted +, –, * and /) 
and with implicit computable surjective type-casting function 

in2ad:INTADR; we assume that in2ad is a homomorphism 
of (INT, 0, 1, +, –) onto (ADR, 0, 1, +, –) and (due to this 
assumption) we can consider  multiplication- and division-free 
integer expressions as address expressions (subject to the type-
casting). 

Let V be an alphabet variables (for legal integers and/or 
addresses), C be a language for representation of integer 
constant (i.e. integer values as well as addresses via implicit 
type casting), T be a language of arithmetic expressions 
(terms) with constants from C and variables from V, and F is 
language of the admissible logical formulas constructed of 

equalities (=) and inequalities () between expressions from T 
using of Boolean operations. Syntax of MoRe programming 
language is defined as follows: 

P::= skip | var V=C | V:=T |  

V:=cons(C
*
) | [V]:=V | V:=[V] | dispose(V) | 

(P;P) | (if F then P else P) | (while F do P). 

Structural operational semantics of this model language 
uses memory model consisting of two disjoint parts: a static 
memory (conventionally) called stack and dynamic memory 
(conventionally) called heap. State is an arbitrary pair of 
mappings s=(s.st, s.hp) (or, for short, s=(st, hp), or (st, hp) 
when s is implicit), where: 

 st is a state of the stack, i.e. a partial mapping (with 
finite domain) from variables V to integers INT 

(understood as their values), i.е. st:V INT, 

 hp is a state of the heap, i.e. a partial mapping with 
finite domain from addresses ADR to integers INT 

(understood as referenced values), i.e. hp:ADR INT. 

The semantics of expressions (terms) T and logical 
formulas F is defined as follows. Since expressions T are 
constructed from constants C and variables V, every 

expression T in every stack state st:VINT has a definite or 

indefinite value st()INT{}. Since logical formulas F are 
constructed (using Boolean connectives) of equalities and 

inequalities of arithmetic expressions, every formula F in 

any stack state st:VINT can be either true (valid) st╞, false 

(invalid) st~, or indeterminate st? according to the 
following rules:  

 if both expressions of an equality/inequality have 
definite values in st, the true or false value of this 
equality/inequality is according to values of the 
expressions; 

 if one or both expressions of an equality/inequality 
have an indefinite value in st, the value of this 
equality/inequality in st is indeterminate; 

 if all sub-formulas of a Boolean formula are true 
or/and false in st, then the true or false of the formula 
is defined in the standard Boolean manner; 

 if a sub-formula of a Boolean formula is indeterminate 
in st, then the formula is also indeterminate. 

Structural operational semantics (SOS) of programming 
language MoRe is axiomatic system for triples of the form 

s<>s, where s is a state, s is a state or an exception abort 

(an exceptional state or situation), and  is a program; 

intuition behind this triple follows: program  converts input 

state s into output state s (that may be exception). SOS 
inference rules are syntax-driven and have the following form: 

s1<1>s1 , … sn<n>sn      

              s<>s                 (application condition) 

 

where n is the number of premises of the rule, and condition is 
an applicability condition; inference rules without premises 
(i.e. when  =0) are axioms. Commented list of axioms and 
inference rules follows below. 

Variable declaration axioms. If a variable x hasn’t been 
declared yet, it can be declared and initialized by a value i, but 
an attempt to re-declare the variable results in exception: 

                                                          

(st,hp)<var x=i>(st{(x,i)}, hp)          if xDom(st)); 

 

                                              

(st,hp)<var x=i>abort     otherwise. 

 

Empty operator axiom:  



  

 s<skip>s    .             

 

Direct assignment axioms. If a variable x has been 
declared and an expression t has a definite value, the 
assignment updates the value of the variable x; otherwise the 
assignment results in exception: 

                                                           if xDom(st)) 

(st,hp)<x:=t>(upd(st, x, t), hp)         and st(t)INT; 

                                              

(st,hp)<x:=t>abort     otherwise. 

 

Memory allocation axioms. The command cons allocates 

(if possible) a fresh segment of (k+1) heap elements, and 

initializes cells in this segment by provided initial values; 

otherwise the allocation results in exception: 

 

                                                                        if xDom(st),      

(st,hp)<x:=cons(i0,…ik)>(upd(st, x, l),hp)    lINT,       

in2ad(l)Dom(hp), … in2ad(l+k)Dom(hp)  

are disjoint addresses, 

hp = hp{(in2ad(l), i0), … (in2ad(l+k), ik)}; 

                                              

(st,hp)<x:= cons(i0,…ik)>abort          otherwise. 

 
Indirect assignment axioms. If a variables x and y have 

been declared, the cell pointed by x has been allocated, the 

indirect assignment updates the value in this cell; otherwise 

the attempt of the indirect assignment results in exception: 

                                            if x,yDom(st),                                          

(st,hp)<[x]:=y>(st, hp)      in2ad(st(x))Dom(hp), 

 h = upd(hp, in2ad(st(x)),st(t)); 

                                              

(st,hp)<x:=y>abort     otherwise. 

 

Dereferencing axioms. If variables x and y have been 
declared, the cell pointed by y has been allocated, then the 
dereferencing updates the value of the variable x; otherwise 
the attempt results in exception: 

                                               if x,yDom(st), 

(st,hp)<x:=[y]>(st,hp)        in2ad(y)Dom(hp), 

                                            st =upd(st, x, hp(in2ad(y))); 

 

                                              

(st,hp)<x:=[y]>abort     otherwise. 

 

Memory deallocation axioms. If a variable x has been 
declared and the cell pointed by x has been allocated, then the 
cell is deallocated; otherwise the attempt results in exception: 

                                                   if xDom(st), 

(st,hp)<dispose(x)>(st, hp)      in2ad(st(x))Dom(hp), 

 

hp = hp\{(in2ad(st(x)), hp(in2ad(st(x))))};      

                                              

(st,hp)<dispose(x)>abort     otherwise. 

 

Composition rules: 

s<>abort                                                   

s<;>abort     ; 

 

s<>s  ,  s<>s 

       s<;>s           if s isn’t abort. 

 

Choice rules and axiom. If the condition is true in a state, 
the choice selects then-branch; if the condition is false, else-
branch is selected; if the condition is indeterminate, the choice 
results in exception: 

            s<>s  

 s<if  then  else >s           if s╞  ; 

 

            s<>s  

 s<if  then  else >s           if s~ ; 

 

  

 s<if  then  else >abort      if s? . 

 



Loop rule and axioms. If the condition is true in a state, 
then one iteration have to be executed and then the loop have 
to be attempted again; if the condition is false, the loop halts; 
if the condition is indeterminate, the loop results in exception: 

 s<>s  ,  s <while  do >s             

         s<while  do >s                   if s╞  ; 

 

  

 s< while  do >s           if s~ ; 

 

  

 s< while  do >abort      if s? . 

 

III. STACK-BASED ALIAS CALCULUS FOR MORE 

Let us fix a program. The set of address variables AV and 
the set of address expressions AE (of the program) are defined 
by mutual induction as follows. 

1) Address variables is any variable x that occurs (within 

the program) in 

a) the left-hand side of any allocation x:=cons…; 

b) the left-hand side of any indirect assignment 

[x]:=…; 

c) the right-hand side of any dereferencing …:= [x]; 

d) any memory deallocation  operator dispose(x); 

e) any address expression. 

2) Address expressions (within the program) are 

a) all address variables; 

b) all subexpression of any address expression; 

c) all expressions t, constructed from C and V using 

addition and subtraction, which occur in the right-hand side of 

any assignment to any address variable x:=t; 

d) all expressions x+1, … x+k  such that the program 

has memory allocation x:=cons i0…ik. 

For any set of address expressions AS and any set of 
address variables D let AS(D) be the set of all address 
expressions in AS that don’t use variables other than in D. In 
particular, any set of address variables D the set AE(D) is the 
set of all address expressions in the program that don’t use 
variables other than in D. 

For any expression e, any expression t and any variable x 

let etx be result of substitution t instead of x in e. 

A pair of aliases (or synonyms) is an equality of any two 
address expressions. A pair of anti-aliases (or antonyms) is an 

inequality () of any two address expressions.   

Recall that all address expressions in AE are linear 
expressions with integer coefficients. It implies that pairs of 

synonyms or antonyms over AE look like Diophantine 
equations and inequalities over integers. But we think all these 
pairs as equations and inequalities over (ADR, 0, 1, +, –) 
assuming implicit type casting (applied to all used integer 
constants). 

A configuration is  a triple  Cnf=(I, N, S) consisting of two 

sets N I AV of address variables and a finite set S of pairs 
of synonyms and antonyms (with variables in I) that has a 
solution as a system of equalities and inequalities in (ADR, 0, 
1, +, –), i.e. that is consistent with theory TADR; informally 
speaking the set I is for Initialized address variables, the set N 
is for Non-allocated initialized address variables, and the set S 
is a System of equations and inequalities to specify what 
expressions may be aliases and what can’t be.  

For any configuration Cnf =(I, N, S) let
5
 

 &Cnf be conjunction of all pairs of synonyms and 
antonyms in S (assuming implicit type casting); 

 cls(Cnf) =  

= {e=e : e,eAE(I), TADR├ &Cnf (e=e)}    

 {ee : e,eAE(I), TADR├ &Cnf (ee)}; 

 ncl(Cnf) = cls(Cnf)   

 {ee : e,eAE(I), (e=e)cls(Cnf)}. 

Let st be a state of a stack; we write st ╞Cnf  and say that 
st satisfies configuration Cnf, when all variables in I are 

declared in st (i.e. IDom(st)) and all formulas from ncl(Cnf) 
are true (valid) in st (i.e. st ╞&ncl(Cnf)). 

Any two configurations Cnf=(I,N,S) and 

Cnf=(I,N,S) are said to be equivalent if I=I, N=N and 

ncl(Cnf)= ncl(Cnf). Distribution (or alias distribution) is an 
arbitrary finite set of configurations in which neither two are 
equivalent. If D is an arbitrary set of configurations, then its 
refinement is a distribution rfn(D) obtained from D by leaving 
a single configuration in each equivalence class in D.  

Let D be an arbitrary alias distribution, st be an arbitrary 
state of a stack; we write st ╞D and say that st satisfies 
distribution D, when st ╞Cnf   for a configuration Cnf in D. 

Let us define the distribution converter aft for MoRe 
programs by structural induction – for individual operators 
and  for compound programs. 

1) For operators that do not change the address 

variables, we have: 

a. aft(D, skip)=D; 

b. aft(D, var x=i)=D¸ if x isn’t address variable; 

c. aft(D, x=t)=D¸ if x isn’t address variable; 

d. aft(D, x=[y])=D  ̧if x isn’t address variable; 

e. aft(D, [ x]=y)=D¸ if y isn’t address variable. 

                                                           
5
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2) If x is some address variable, distribution aft(D, var 

x=i) is obtained as follows. Let Cnf=(I,N,S) be an arbitrary 

configuration in D. Make re-initialization warning if xI. Let 

Cnfvar x=i  be (Ivar x=i, Nvar x=i, Svar x=i) where 

a. Ivar x=i=I{x}, 

b. Nvar x=i=N{x}, and 

c. Svar x=i= ncl({e=e : e,eAE(Ivar x=i),  

TADR├ &Cnf (eix=eix)}    

 {ee : e,eAE(Ivae x=i), 

TADR├ &Cnf (eix eix)}). 

Then let aft(D, var x=i) be rfn{Cnfvar x=i : CnfD}. 

3) If x is some address variable, distribution aft(D, x:=t) 

is obtained as follows. Let Cnf=(I,N,S) be an arbitrary 

configuration in D. Make un-initialization warning if  xI or t 

has uninitialized variable (i.e. not in I). Make memory-leak 

warning if xN and TADR├ &Cnf(etx≠x) for every address 

expression eAE(I). Let Cnfx:=t be (Ix:=t, Nx:=t, Sx:=t) where 

a. Ix:=t=I, 

b. Nx:=t=N, and 

c. Sx:=t= ncl({e=e : e,eAE(I),  

TADR├ &Cnf (etx=etx)}    

 {ee : e,eAE(I), 

TADR├ &Cnf (etx etx)}). 

Then let aft(D, x:=t) be rfn{Cnfx:=t : CnfD}. 

4) Distribution aft(D, x:=cons(i0,…ik) is obtained as 

follows. Let Cnf=(I,N,S) be an arbitrary configuration in D. 

Make un-initialization warning if  xI. Let y be a new (fresh) 

variable and let NewCnf(y,k) be the set of all pairs of antonyms 

that have the form e≠y+i and y+i≠y+j where eAE(I) and 

0i<jk. Make memory-leak warning if xN and TADR├ 

(&Cnf & &NewCnf(y,k))(eyx≠x) for every address 

expression eAE(I).  Let Cnfx:=cons(i0,..ik) be (Ix:=cons(i0,..ik), 

Nx:=cons(i0,..ik), Sx:=cons(i0,..ik)) where 

a. Ix:=cons(i0,..ik)=I, 

b. Nx:=cons(i0,..ik)=N\{x}, and 

c. Sx:=cons(i0,..ik)= ncl({e=e : e,eAE(I),  

TADR├ (&Cnf & &NewCnf(y,k)) (eyx=eyx)}    

 {ee : e,eAE(I), 

TADR├ (&Cnf & &NewCnf(y,k)) (eyx eyx)}). 

Then let aft(D, x:=cons(i0,…ik)) be rfn{Cnfx:=cons(i0,..ik) : 

CnfD}. 

5) If x is some address variable, distribution aft(D, 

x:=[y]) is obtained as follows. Let Cnf=(I,N,S) be an arbitrary 

configuration in D. Make un-initialization warning if xI or 

yI. Make invalid-access warning if TADR├ &Cnf(y=z) for 

some variable zN. Let Cnfx:=[y]  be the set of configurations 

(Ix:=[y], Nx:=[y], S) where 

a. Ix:=[y]=I, 

b. Nx:=[y]=N, and 

c. S  is consistent with  

ncl({e=e : e,eAE(I\{x}), 

TADR├ &Cnf (e=e)}    

 {ee : e,eAE(I\{x}), 

TADR├ &Cnf (ee)}). 

Then let aft(D, x:=[y]) be rfn(CnfD Cnfx:=[y]). 

6) If x is some address variable, distribution aft(D, 

dispose(x)) is obtained as follows. Let Cnf=(I,N,S) be an 

arbitrary configuration in D. Make un-initialization warning if  

xI. Make invalid-access warning if TADR├ &Cnf(x=y) for 

some variable yN. Let Cnfdispose(x) be (Idispose(x), Ndispose(x), 

Sdispose(x)) where 

a. Idispose(x)=I, 

b. Ndispose(x)=N{x}, and 

c. Sdispose(x)=S. 

Then let aft(D, dispose(x)) be rfn{Cnfdispose(x) : CnfD}. 

7) Compound Programs: 

a. aft(D, ( ; )) = aft(aft(D,), ), 

b. aft(D, if  then  else ) = rfn(aft(D,) aft(D,)), 

c. aft(D, while  do ) = rfn(n≥0 aft(D,n
)) where 0

= 

skip, and k+1
=(k 

;). 

IV. RESULTS AND CONCLUSION 

Stack-based alias calculus for programming language 

MoRe is safe in the following sense. 

Theorem: Let D be any alias distribution,  be any MoRe-
program and s=(st, hp) be any state such that st╞D; if 

s=(st,hp) is a state such that s<>s then st╞aft(D,). 

This theorem can be proven by routine induction on 
program structure. Its formal proof will be published in the 
full (journal) version of the paper soon.  

More interesting questions are relations between run-time 

exceptions and warnings that may be casted in exercise aft-

transformation. In particular, if a program   started in a state 

s aborts due to re-initialization of some address variable then 

re-initialization warning will be casted in  aft(D,); if  uses 

un-initialized address variable then un-initialization warning 

will be casted in  aft(D,). 

But how run-time memory leaks do relate to memory-leak 

warnings casted in exercise of aft(D,)? How run-time invalid 

memory accesses do relate to invalid-access warnings casted 

in  aft(D,)? If to answer these questions then these warnings 

can be used for errors prediction. 

In particular, the examples of errors mentioned in the 

Introduction can be represented in MoRe as follows: 

 x:= cons(1) ; x:= cons(2), 

 y:= x ; dispose(x); dispose(y). 



if to compute aft({({x, y}, , )}, (x:= cons(1) ; x:= cons(2)) 

then memory-leak warning will be casted; if to compute 

aft({({x, y}, , )}, (y:= x ; dispose(x); dispose(y)) then 

invalid-access warning will be casted. 

Recall that the primary purpose of our position paper is to 

design and present an alias calculus for more realistic 

programming language than the original one in [4]. Our 

calculus is control flow insensitive and use only stack 

variables for analysis. So the most evident topics for further 

research are design and development of a sensitive to control 

flow calculus that takes into account some information about 

the heap. Only after that it will make sense to put into research 

agenda prototyping on base of the calculus of some alias 

analysis tool and try it for some benchmarks.  
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